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A B S T R A C T  

Let kn be the smallest constant such that for any n-dimensional normed 

space X and any invertible linear operator T E £:(X) we have 

[det(T)[-[ iT-In ~ kn llTlln-k 

Let A+ be the Banach space of all analytic functions f ( z )  ~- ~'~k>_o akzk on 
the unit disk D with absolutely convergent Taylor series, and let llftlA+ ---- 

~-'~k_>0 I akl; define : n  on /~n by 

n 

= inf (II/IlA+ - lf(o)l; f(z) = g(z) H()~i - z), g e A+, g(O) 
i = 1  

=1}. 
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We show that  kn = sup{cpn(A1 . . . . .  )~ . ) ;  (~1 . . . . .  An) 6 D " }  • More- 
/ 

over, if S is t h e  left shif t  opera tor  on the  space £ ~ :  S ( x o , x l ,  . . . , xp ,  ...) ---- 

(Xl . . . .  , xp, ...) and  if J ,~(S) denotes  the  set of all S- invar iant  n -d imens iona l  

subspaces  of  £oo on  which S is invertible,  we have  

k. = sup{Idet(SIE)l II(SIE)-I[I ;E E Jn(S)}. 

J. J. Schiller (1970) proved that k. <_ V~ and conjectured that k. = 2, 

for n > 2. In fact k3 > 2 and  us ing the  preceding resul ts ,  we show tha t ,  

up  to a logar i thmic  factor,  k ,  is of  the  order of ~ when  n ---* +oo.  

I n t r o d u c t i o n  

Let X be an n-dimensional normed space. The number k(X) is defined as the 

smallest constant k such that  the following inequality 

[det (T)I [[T-'II k IITII " - i  

holds for any invertible linear operator T 6 £(X).  This characteristic k(X) 
of X was introduced and studied by Sch~iffer IS] for real normed spaces. It is 

interesting to observe that  the operator (det(T))T -1, also called the adjugate 

operator of T, coincides with the differential at T of the function S ~ det(S). 

The starting point of Sch~iffer's investigation was the remark that  for a finite 

dimensional Hilbert space H we have k(H) = 1. He proved that,  if £~ is R '~ 

equipped with the norm Ilxll -- ~ i~1  Ixil, one has k(g~) = 2, for n > 2. He 

conjectured that  g~ was an extremal case, that  is, if we define kn by 

kn = sup{k(X); X is an n-dimensional normed space}, 

then kn = k(t~) = 2. He proved this conjecture for n = 2 and then obtained the 

following estimate 

k(x) < 

for any real n-dimensional normed space X (from now on c will be a constant 

independent of n). 

The question whether the sequence kn is bounded remained open. As we shah 

see further, the answer is negative, and we have already k3 >_ 9/4 > 2 (see 

Example 11 below). 
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The problem of the computation of kn has an analytic reformulation as follows. 

Denote by A+ the Banach space of all analytic functions on the unit disk D = 

{z • 12; Izl < 1}, with absolutely convergent Taylor series. The norm of the 

function f ( z )  = ~-~k>o ak zk of A+ is given by 

I lf l lA÷ = lakl.  
k>0 

Let us define a function qan : /)n _., R as follows: for (A1,. . . ,  An) • / ) n  

n 

~n(/~l , . - . ,  An) = inf {HfIIA+ - lf(O)[; f ( z )  = g(z) H ( A ,  - z)}, 
i=1 

where the infimum is taken over all polynomials g satisfying g(0) = 1. 

We shall prove (Theorem 1) that  in the complex case 

(i) k n = sup  { ~ n ( , ~ l , . . . , ) ~ n ) ;  ( , ~ l , . . . , ) ~ n )  • O n }  • 

A very similar formula holds also in the real case (see Remark 2 after Theorem 1). 

Thus the problem of estimating kn is reduced to finding the good choice of a 

vector (A1, ..., An) i n / ) n  and to computing ~n(A1, ..., A,~). 

This new analytic representation of kn allows one also to give immediately a 

negative answer to Sch/iffer's conjecture. 

CLAIM: The sequence kn is unbounded. 

Proo~ Suppose that  on the contrary there exists a universal constant c' such 

that  kn < c' for any n. Let (Ak)k>l be a sequence in the open unit disk D for 

which the set of limit points is the unit circle S 1 and l'Ik>l [Ak[ = /3  > 0. Then 

from our assumption we have 

 on(A1, ...,,X,) _< c', for every n. 

So that  there exists polynomials qn(z) such that  

qn(O) = f i  IA~I, qn(Ak) = 0 for k = 1, . . . ,n and llq=llA+ -< c ' +  i .  
k=l  

Since the sequence qn is uniformly bounded in the space A+, it has a subsequence 

(q~,) which converges to some f E A+ in the weak *-topology on A+ = I1 (N) = 
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c0(N)*. Consequently qm converges to f uniformly on compact subsets of D. We 

have f (0)  = limqn(0) = ~3 ¢ 0 and for any k _> 1, f(Ak) = liml qm(Ak) = 0. By 

the continuity of f on all D, we have thus f(z) = 0 for all z E $1; since f is 

analytic over D, it must be 0 identically; but this contradicts f (0)  = j3 ~ 0. 1 

The question about the precise behaviour of k,, is more delicate. Using proba- 

bilistic arguments, we proved that  if (A1, ..., A,~) are taken independently on the 

circle of radius 1 - 1In then, for some c > 0, the event 

has a strictly positive probability. This shows that  

c 

kn > log(logn) logn" 

When this paper was almost complete, the above result was communicated to 

J. Bourgain and he gave a very nice and short proof of it, in the stronger form: 

k~ >c~ i n 
- log n" 

We are indebted to Bourgain for his permission to present the argument of his 

proof (Theorem 5)*. 

The original argument of the authors is somewhat more complicated, but  it 

gives more information concerning the class A+. We present it in the last section. 

In this problem, there is some difference between the real and the complex 

case. To simplify the exposition, we shall deal mainly with the complex case. If 

needed, we shall explain how to deal with the real case. 

1. P r e l i m i n a r i e s  

As usual D, /) ,  S z will be the open unit disk, closed unit disk and unit circle, 

respectively. Together with the notations given in introduction, we shall use also 

the following ones. Let Mn be the space of n × n matrices. For T E M,,, we 

shall denote by PT its characteristic polynomial, P r ( z )  = de t (T - zI), and by 

* After this paper was submitted, Theorem 6 was improved by Herv~ Queffelec, who 
proved that k,~ > V~-/2e for every n > 1, and that lim,,(k,,/y~ ) > 1 (to appeax 
in Notes C.R. Acad. Sci. Paris). 
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QT its minimal polynomial; spec (T) is the set of all eigenvalues of T. If all 

eigenvalues of T have multiplicity 1, we shall say that T is a matrix with simple 

spectrum. If the matrix T is invertible, the matrix adj (T) = det(T) T -1 is called 

the a d j u g a t e  m a t r i x  of T. The matrix adj (T) is the comatrix of T, with (j, i) 

cofactor of T as (i, j)  entry. It follows that  the adjugate of T can be defined 

for any matrix T. If the rank of T is less than n - 1, then adj (T) = 0 and if 

rank(T) = n - 1, then adj (T) is the rank one matrix such that 

adj (T) o T = 0 and adj (T)x = oz.x, for every x • ker(T) 

where a is the product of all nonzero eigenvalues of T. In the sequel, we shall 

identify the spaces M~ and £((2 n) so that, for example, a simple spectrum op- 

erator will be an operator with simple spectrum matrix. 

Let X be a linear normed space. We denote by H.I[x or simply by I1.[I the norm 

on X. For given normed linear spaces X and Y, £(X, Y) is the space of all linear 

operators from X to Y. We denote the usual norm on £ ( X , Y )  by II.Hx--.Y or 

simply by I1.[I. We shall write £(X)  instead of £ ( X , X ) .  An operator T • £ ( Z )  

is called a c o n t r a c t i o n  if [IT[[ < 1. By homogeneity, we rewrite the definition of 

k(X) given in the introduction as follows: 

k(X) = sup{Hadj (T)[I; T • £(X) ,  [[TI[ <_ 1}. 

By continuity, this supremum can be restricted to any dense set of contractions. 

We shall work then with operators with simple spectrum. 

Let E n be a n-dimensional linear space (e.g. E '~ = R n or Cn). We denote by 

Af the collection of all norms on E'L For a given T 6 £(E'~), the subset Af(T) 

of Af is defined as 

Af(T) = {[[.[[ 6 Af; [[T[[ _< 1}. 

Observe that  Af(T) is not empty if and only if the set {Tk; k >_ 1} is bounded in 

£ ( E  n) (if 1[ • [I 6 Af, define Illxlll = sup k lITkxll, then Ill • Ill • Af(T)). In this 

case, we shall say that  T is power  b o u n d e d  (abr. p.b.). It is easy to see that 

T is power bounded if and only if spec (T) C / )  and QT has no multiple zeros on 

S 1 (use the Jordan canonical form of T). 

Definition: For a power bounded operator T • £(En) ,  define 

~¢(T) = sup{lladj (T)II; [I-II 6 Af(T)}. 



230 E. GLUSKIN ET AL. Isr. J. Math. 

Of course, ~(T) is a function of the mapping T and does not depend on matrix 

representation. In particular, ~(T) only depends on the Jordan canonical form 

of T. 
From the definition of ~, it follows that 

(2) kn = sup{~(T); T E Z:(cn), T is p.b. and has simple spectrum}. 

Equality (1) is proved in the following theorem. 

THEOREM i: Let T E £(C n) be an invertible power bounded operator with 

simple spectrum; then i f  PT(Z) n A = I-[i=1( i - z), we have 

= . . . , , x , ) .  

In particular, 

k,  = sup {~,(A1, . . . ,  A,); A~ • D, A, # A~ for i # j}.  

Proo~ Let PT(Z) n k = ~,k=O akz be the characteristic polynomial of T, then 

a0 = det(T) and, by the Cayley-Hamilton theorem, we get 0 = ~.'k=o akTk and 

so 
n 

adj (T) = - E akTk- l"  
k=l 

Let g be a polynomial such that g(0) = 1 and let the polynomial f ( z )  = 

~-.k>O bk zk be defined as f ( z )  = g(z)PT(Z). Then we have bo = ao = Hi~z hl 
and ~k>0 bkTk = O. By multiplying the last equality by T -1, we obtain 

adj (T) = boT -1 = - E bkTk" 
k>_l 

Then for all I1.11 • Af(T), the following inequality holds: 

[ladj (T)II -< E [bklHT]lk -< E Ibkl = []fHA+ - ]f(0)l. 
k)l  k>l 

Taking infimum over all polynomials g such that g(0) = 1, we obtain 

][adj (T)II _< ~n(Ax, ..., An) 

for any H.[I • A/'(T). It follows that 

It(T) <_ ~p,,(A l, ..., An). 
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Let now V be the subspace of I : (C")  generated by {T4; k _> 0}; since T 

has a simple spectrum, V is n-dimensional with basis {I, T . . . .  ,T'~-I},  where 

I = T o denotes the identical operator. Let T be the linear operator on V which 

transforms T k into T 4+1 for all 0 < k < n - 1. Then T ( T  4) = T 4+1, for all k > 0. 

Observe that  for any polynomial R and any k _> 0, we have R(T) (T  k) = T4oR(T); 

since T has a simple spectrum it follows that T and :~ have the same characteristic 

polynomial. As a consequence, the operators T and T are similar, in the sense 

that  there exists an invertible operator S from C '~ onto V such that  T = S T S  -1. 

In particular we have to(T) = ~(T). Indeed if [[ . [[ • Af(T), define for y • V, 

Illylll = I IS -~y l l ;  then II adj (T)II  = III ad j  (T)III  • 
Let B be the closed convex disked hull of {T4; k _> O} in Z:(C"), 

B = c--6-Kq{bkT4; k > O, b4 • D}. 

Since T is power bounded, B is bounded. We equip V with the norm associated 

to B; in other words, for x E V, we have 

[[x[[ v = inf{A > 0 ; z E AB}. 

By the definition of T, we have ,IT v--.v < 1 and since I E B, [[I[[v -< 1.  Recall 

that adj (T) = - 2.~k=lx-'n ukl- ,vk-x and so adj (T) = - ~ - 1 -  akTk-1; we get then 

a(T)  = a(:~) >_ adj (T)  v--.y >- ad j (T) ( I )  y = ~ a 4 T k - 1  " 
4----1 V 

And by the definition of [['[[v, we have 

= inf E [ b k [ ;  b4T k = akT 4-1 
k=l v I, 4_>0 _ k=l 

where the infimum is taken over all sequences (bk) with a finite number of non- 

zero entries. For such a sequence (bk), let b(z) = ~4>o b4z4 - Y']/k=l a4zk-l" 

The equality ~,4>ob4T 4 = ~,'k=l a4Tk-1 means that  b(T) = O, or in other 

words, that  the minimal polynomial of T divides b. In our case, the minimal 

and characteristic polynomials of T coincide, and thus there exists a polynomial 

h such that  b(z) = h(z)PT(z), or in terms of (bk) that ao + z(~k>obkz  k) = 

(zh(z) + 1)PT(z). It follows that 

n 

adj ] = E akTk- '  = ~o,~(A,, ...,)~,0. 
(:r)(I),  v k = l  v 

I 
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We get thus a(T) > ~pn(A1, ..., An). 

The conclusion follows using equality (2). | 

Remarks: (1) The last theorem is also true, with the same proof, for any p.b. 

operator T such that PT = QT. When PT ~ Qv,  the following correction is 

needed: let QT(z)  = l-L~=l(Z - #i) and let the polynomial R be defined by 

PT(Z) = R(z)QT(z) ,  then 

a(T) = IR(0)l Vm(#l,  ..., #m). 

(2) With the same proof, the first part of Theorem 1 holds in the real case. To 

get an estimate of k,~, we have to describe the class of characteristic polynomials 

of real matrices. Namely, let 1)~ be the set of all (A1, ..., An) E ])n such that  the 

polynomial I-Ii~l (Ai -  z) has real coefficients (in other words the sets {A1, ..., An} 

and (~1, ..., ~n} coincide). For any (A1, ..., An) E/ )~ ,  there exists a p.b. operator 

T E /:(R n) for which A1,...,A,~ is the spectrum of T. Of course the converse is 

also true. Consequently, we get the following real analogue of (1): 

sup{k(X); X u-dimensional real normed space} 

= sup{~n(A1,..., A,~); A i ¢  Aj for i ~ j,  (A1 .... , An) E /9~}. 

(3) Let T E L:(E n) be a p.b. operator such that PT = QT and let x E E n be such 

that  {Tnx; p >_ 0} spans E n. Using the proof of Theorem 1, one can show that  

a(T) = inf{A > 0 ; Idet(T)[x E Ac-6-fiV{apTnx; p >_ 1, a n E D}}. In particular, 

if A E Mn is a Jordan matrix of T, if 1 = (1, ..., 1) E C n and A n = A n l , p  >_ 1, 

then 

g(T) = inf{A > 0; Idet(A)ll e A,c-'6-fiV{apAp ; p > 1, a p e  D}}. 

Let now S be the left shift operator on the space go~ consisting of bounded 

sequences: 

S(Xo, Xl, ... , Xp, ...) = (xl, ..., x n .... ). 

Let us denote by In(S) the set of all S-invariant u-dimensional subspaces of goo 

and, for E E In(S), let SIE E E.(E) be the restriction of S to E. It is easy to see 

that any p.b. matrix T E Mn, with PT --- QT, can be realized as a restriction 

of the left shift S, in the sense that  there exists an n-dimensional S-invariant 

subspace E of eoo such that  SIE is similar to T. For estimating ~(T), it is 

enough to consider only SIE. Namely we have: 
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LEMMA 2: For any power bounded matrix T 6 M,, which satisfies PT = QT, 

there exists an invariant subspace E 6 I?%(S) such that 

~(T) = Iladj (Sl~)ll- 
Proo~ For simplicity, we shall only consider the case when T has a simple 

spectrum and is invertible. Let PT(Z) = I-L=1( i - z) and, if 1 < i < n, define 

f~ 6 too by f~(p) = A -p for every integer p > 0. Then {]1, .-., f?%} is a basis of 

the unique space E 6 I?%(S) such that T is similar to S]E. Let x 6 E be written 
?% 

x = ~ i = l  x~f~; then 
7% ?% 

and Hadj(S[E)XH=l~l~lAi p>o i=1 

?% 

IIxll- sup  rx, 
p>_0 i=1 

Hence 

Iladj (SlE)II 
7% 7% ?% 

= inf {p > 0  (1-I A i ) Z x ~  I _< p. sup Z APxi I for all (x~)i~l 6 C7%}. 
i=i i=1 p > l  i=1 

The lemma follows by duality, in view of Remark 3 after Theorem 1. | 

The next proposition follows from (2) and the preceding lemma: 

PROPOSITION 3: With the previous notation, k?% = sup{[[adj (S[E)[[; E 6 In(S)}. 

2. E s t i m a t e s  for k?% 

LEMMA 4: For any integer n >_ 1 there exist n points ~1,. . . ,  ~,~ 6 S 1 such that 
n 

] Z  ¢1 -< 4v/n l°g( 1 + k) /'or every integer k >_ 1. 
i = l  

Proof." Let Z1 , . . . ,  Z?% be n independent complex valued random variables uni- 

formly distributed on the unit circle S 1. Then by the Bernstein inequality, one 

has 

P({I ~ zd > t}) < 4e-*'/% 
i = l  

But for any integer k >_ 1, the sequence of random variables Z ~ , . . . ,  Z~ has the 

same distribution as the sequence Z1 . . . .  , Zn and consequently 

) P {] Z ~ [ < - 4 x / n l o g ( l + k )  f o r e v e r y k > l }  > l - - 4 y ~ e - 4 1 ° g ( l + k ) > ~ .  
i = l  k_>l 

The lemma follows. | 
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THEOREM 5 (J. Bourgain): For any n >__ 1, there exist n points A I , . . .  , Am E ~) 

such that 

qOn(Al , .* . ,  An) ~_ C log(1 + n) ' 

where c > 0 is a numerical constant Ondependent of n). 

Proo£" Let hi = 2-1/'~(i for every i = 1 , . . . ,  n where (( i) l<i<,  is given from 

Lemma 4. Then for any function f ( z )  = ~k>o akzk E A+ which satisfies 

one has 

n 

a o = f ( O ) = H A i  and f (Ai )=O,  f o r i = l , . . . , n ,  
i = l  

n n 

i=l  k>_O i=1 k>_l i-~1 

:> " 2 - 1  -- 4 Z 2 - k / n x / n l o g ( 1  + ~ ) l . k l  • 

k>l 

It follows that  

-~vfn \k>l(sup 2-~x/log(1 + k) > c  10g(n+ 1) ' ll/llA+ -I/(0)[ = la l ___ 
k>l 

for some c > 0. | 

In view of Theorem 1, Theorem 5 gives the following estimate for kn: 

THEOREM 6: There exists a constant c > 0 such that for every n >_ 1, 

Remark: It is clear that  

n 
k . > c  l og ( l+  n) " 

n 

i=l 

It follows from this observation and from Remark 2 after Theorem 1 that  Theo- 

rem 6 is also true in the real case. Indeed, with A1,. . . ,  )~n of Proposition 5, we 

have 

~ 0 2 n ( A l , . . . , A n , ~ l , . . . , ~ n )  ~> 2 - 1 ~ ° n ( A l ,  - - , , A n ) ,  
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and therefore, in the real case, 

 Vil - k. > ~ og(7:~ n) • 

We investigate now an upper bound for k,~. Let g~ be C n or R" equipped with 

the Euclidean norm. Given A E £(g~), let sl _> . . .  _> sn >_ 0 be its singular 
2 numbers (that is sT, . . . ,  s n are the eigenvalues of the operator A ' A ) .  It is well 

known that  llAl] = sl and that  llA-1]l = s~ 1 if A is invertible; it follows that  
n--1 

I] adj a i ] =  1-Ik=l sk, and this gives k(g'~) = 1. 

Let us now recall that the Hilbert-Sehmidt norm of A E £(g~) is defined by 

[[A]IHS = x / t r ace (A 'A)=  (~-~ 
2 ~ 1 / 2  

8 k )  • 
k----1 

It follows that  for any A E £ ( ~ ) ,  we have 

[[adj A[[ _< ( ( n -  1) - I / 2 [ [AI IHs )  n -1  . 

If T E £ ( X )  and u E £(X,  Y) is an isomorphism, then for the operator S = 

uTu  -1 E £ ( Y )  we have adj S -- u o (adj T) o u -1 . So, for any n-dimensional 

normed space X and for any operator T E £ ( X ) ,  the following inequality holds: 

l ladj Tll _< (n 1) -e -~  inf{ l lu-~l l  _~ . - 1  - lluTu II,,  l lu l l ;  u i somorph i sm:  X --> ~ ] . .  

The following proposition is a consequence of this inequality and of the next 

lemma: 

PROPOSITION 7 ([S] in the real case): For any n >_ 1 we have 

k~ < ~ / ~  

LEMMA: Let X be an n-dimensional normed space. Then there exists an operator 

u E £.(X, g'~) such that 

(1) II~,-111 _< 1, 
(2) Ilull < x/z  and, moreover, for any operator R E £(g'~, X ) ,  we have II~RII.s 

< v~llRll. 

We omit the proof of this lemma (see e.g. [P] or [T]). In fact the image by u -1 

of the unit ball of g~ is the ellipsoid of maximal volume contained in the unit ball 
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of the normed space X, and the lemma is equivalent to the result of F. John [J] 

about contact points of the unit ball with this ellipsoid. 

In other terms, Proposition 7 says that for any power bounded matrix T E Mn, 

one has t~(T) < v f ~  and Theorem 6 shows that this bound is essentially sharp. 

Of course, for some special classes of matrices, this estimate may be improved. 

LEMMA 8: Let T be a power bounded operator with [ det(T)[ = 1. Then to(T) = 

1. 

Proof: Consider first the real case. Let [I.H E Af(T) and denote 

B = {x; Ilxlt < 1). 

Then T(B)  C B and, since [det(T)l = 1, we have vol (T(B))  = vol(B).  So 

T(B)  = B and I] adj T H = HT-1H = 1, which gives the desired equality. In the 

complex case, it is enough to consider C n as R 2~, and to check that the real 

operator T' corresponding to T in such a representation still satisfies I det(T~)] = 

1. | 

As consequences of Theorem 1 and Proposition 7, we obtain the following 

corollaries. 

COROLLARY 9: Let z l , . . . , z n  be n points in the unit disk D, then 
< 

In the same way, using Lemma 8, we get the following result which can also 

be proved directly. 

COROLLARY 10: For any A1,...,A,~ E S 1 and for every e > 0 there exists a 

polynomial f such that f(O) = 1, f (Ai)  = 0 for i = 1 , . . . ,  n and HfHA+ <- 2 + e. 

Remarks: (1) Some information about to(T) remains even if, instead of requiring 

I det(T)] = 1, we know that  [ det(T)] is very close to 1. For example, in the real 

case we have 
I det(T)[ < 

1 - (1 - I  det(T)[) 1/n 

Indeed let B1 and B2 be two centrally symmetric convex bodies of R = such that 

B2 C B1, and define Po = inf{p > 0 ; B1 C AB2}. We get from the Brunn-  

Minkowski theorem that 

_ _  f~/po f ( t )d t  vol (B2) < 

vol(B1) - f l f ( t ) d t  
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for some continuous positive function ] such that f l / (~ - l )  is concave on [0, 1]. 

One can deduce from this property of f that 

vol(B2) <_ ( 1 -  (1 1 '~ - ~oo) ) vol(B1). 

Suppose now that X is an n-dimensional real normed space, and let T • £ (X)  

be invertible and norm 1; we have then lIT-111 < (1 - (1 - Ide t (T) l ) l /n )  -1 . The 

desired inequality for ~(T) follows. 

(2) If T is an invertible p.b. matrix in Mn, define a matrix T ~ • Mn+l by 

T'(Xl, ...,Xn,Xn+l) = T(x l , . . . , xn)  for (Xl,...,X~+l) • C n+l. 

Then it is easy to see that ~(T') = g(T) + Idet(T)l. It follows that the sequence 

(kn),~>o is increasing (IS]). 

Problem: Give a direct proof of Corollary 9, that is, given Zl, ..., zn E D, find a 

polynomial f such that I](0)[ = I-I~=1 Izkl, ](zk) = 0 for every k -- 1 , . . .  ,n, and 

HflIA+ <_ 1 + v ~ .  The Blaschke products are natural candidates. But recently, 

answering a question of the authors, I. Vidensky proved that there exist Blaschke 

products of n terms, with distinct zeros in D and A+-norm of the order of n. 

Example11: We h a v e k 3 > 9 / 4 .  Let (a,b, 1 ) • R  3 be such t h a t 0 < a < b <  1, 

and let An = (a n, b n, 1), for n > 0; let also C be the closed disked convex hull in 

R 3 of {A, ,  n >_ 0}; we consider the operator T (= Ta,b): R 3 --* R 3 with diagonal 

matrix: 
( a  0 0 )  

0 b 0 
0 0 1 

for the norm on R a given by the gauge of 6'. It is clear that  [IT[I = 1, and we 

have 

I[adj (T)I I = inf{p > 0 ; (b, a, ab) • pC}. 

Now, i f a  > O, b > O, a ~ b, a+b < 1, it is not difficult to prove, using Remark 3 

after Theorem 1, that Iladj (T)I I = 2+ab, which tends to 9/4 when a and b --* 1/2. 

It follows that k3 >_ 9/4 and, by the last remark, since det(T) ~ 1/4, that 

k4 > 5/2. 
This example shows also that the mapping T ) ~(T) is not continuous on 

the set of p.b. operators. In fact when a, b ~ 1/2, Ta,b tends to an operator U 
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with diagonal matrix 

0 g . 
0 0 

By Remark 1 after Theorem 1, we have ~(U) = ½~(1/2,1) <_ ½k2 _< 1 (since 

k2 = 2). But g(Ta,b) ~ 9/4. 

3. E n t r o p y  e s t ima te s  for A+ a n d  lower b o u n d  for k~ 

We give here our original proof of the estimate 

c 

kn >- log(logn) logn" 

This proof uses some tools which may be useful for other purposes: Proposition 14 

gives an estimate for the entropy of the unit ball of A+. We need first some 

notation. 

For every number 0 < r _< 1, let #~ be the uniform probability measure on 

r S  1 = { z  • c ;  Izl = r} and  extend #~ on the unit disk by #~(E) = #~(E MrS 1) 

for any measurable subset E of D. Let W = ( f ;  f • A+, [[f[[A+ <_ 1}. For every 

0 < r < 1 , we define a new metric on A+ by Ilfll~ = sup~ If(rei~)l, for f • A+. 

For every t >_ 1 let V(t) = ( f  • tW; fC0) = 1}. If (E, d) is a metric space and 

c > 0, an c-net of (E, d) is a subset A of E such that 

E = U (x; d(x,y) < c}. 
yEA 

Denote by N(E, d, c) the smallest cardinality of an e-net of (E, d). Observe that  

if (E, d) is a metric subspace of another metric space (E', d), and if we have a 

covering of E by e-balls of E', that  is, E C UueA(x; d(x,y) < ¢} with A C E'  , 

then 

(3) N(E, d, 2c) IAI 

where [A[ denotes the cardinality of A. Finally, for a subset V of A+ , let 

N(V,r,c) = N(V, II.ll~,e). 

LEMMA 12: Let ¢, t > O, 0 < r < 1 and n >> 1 be an integer, such that 

(4) ( sup < 2c}))'~N(V(t),r, C) < 1. 
fev(o  



Vol. 87, 1994 NORMS OF INVERSE MATRICES 239 

Then  there exist n distinct complex  numbers  Zl, z2, . . .  , z n o f  modul i  r such that  

Proof." 

max If(z,)l > e, for every f E V( t ) .  
l<_i<_n 

For a function g • A+ and a number ~ > 0, let us define 

fl,.a = {(¢x, . . . ,G)•  (rS~)~; l<,<~max Ig(¢,)l _ < ~}. 

Choose a minimal e-net A~ for the metric space (V( t ) ,  II.L) and set 

f~ = U 12g,2~. 
gEA~ 

Then 

( )° ~ ( ~ )  ~ I A ~ l g ~ ( S ~ , 2 ~ )  ~ IA~I sup ~{I f l  ~ 2~} < 1. 
SEV(t) 

Thus there exist distinct complex numbers zl, ..., zn E r S  1 such that for every 

g E A~, we have maxl<_i_<n Ig(zdl  > 2e. Let now f E V(t). Since A~ is an e-net 

of V( t ) ,  there exists g E A~ such that IIS - gll~ < e. Therefore 

max If(zl)l > max Ig(zi)l- I I f  - g l l ~  > 2 e  - e : e .  m 
l<_{_<n - -  l < { < n  

For satisfying condition (4), we study each of its factors. 

LEMMA 13: 

have 

Le t  0 < u < 1 < t and 0 < r < 1. For every function f E V( t ) ,  we 

m({Ifl ~ u}) ~ l - log___.~_~ 
log ~ " 

Proof'. Let f E V(t); since f is holomorphic in the disk of radius r, Jensen's 

inequality gives 0 = log ]f(0)I <_ f log Ill d#r. Now since If] ~ t on D, we get 

0 ~ m({lfl ~ u})logu + (1 - /z r ({I f l  <__ u}))logt; 

hence 
log t 

#r({If] -< u}) _< l o g t -  logu"  I 

In the next proposition we estimate the entropy of A+ for the uniform metric 

on a circle of radius r. We ignore its exact order of magnitude. In what follows, 

we shall only use the upper bound, but the lower bound that we get gives a good 

idea of the order of this entropy. 
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PROPOSITION 14: Let W be the unit ball of A+ and ½ < r < 1. Then, with the 

preceding notation, for every 0 < 0 < 1, we have 

) log N(W, r, O) <_ -~ log / 3 ~  + 2 

where a,/3 > 0 are universal constants. Moreover t'or 0 < 0 < 1/4Vt2, we have 

1 . / 802 \ 
logN(W,r,O) >_ 3 - ~  log ~ , ~ ) .  

Proof: (1) The upper estimate. Let r and 0 be given as above. Define m = 

[3/log 2 ~], where [x ] denotes the integral part of x 6 R, so that  ~ _< r m < 1. 

Then set 

0 0 
(5) Op = a(2rm)-P, p > 0, so that Z 0 p r m ;  = 

- 2 
p>o 

We observe also that  
O . 2 P < O p <  0.4p" 

Now let Wm be the subset of W consisting of all the complex polynomials of 

degree less than m, and for every integer p _> 0, let Ap,.~ be a 0p-net of Wm for 

the uniform metric on the circle of radius r. 

We shall show that  if A is the set of all polynomials of the form ~p>O Zmpgp' 

where gp • Ap,.~, then for any ] • W there exists g • A such that  Hf-gH; < 0/2. 
~"~k=rn-1 

Indeed if f ( z )  = ~~k>o ak zk • W and fp(z) = z..,k=o amp+kz ~, write 

/ m p + m  - -  1 

p>_O k k=rnp / p>O 

Since fv • Win, there exists gp • Ap,m such that I[fp - gpll~ < op. Set g(z) = 

~.p>o zmPgp(z) • Using (5) we get Ill - gll~ < 0/2. By (3) we have then 

(6) logN(W,r,O) <_ Z l o g N ( W m , r ,  Op). 
p>_o 

Denote pq ---- e 2ixq/2m, q = 1 , . . . ,  2m. From Bernstein's theorem, we have 

(7) IIPl[~ <- ~ l ~ m  IP(rpq)l, for every P • W.~. 
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Now, for k = 0 , . . . , m -  1, let Ak E C 2"~, Ak = (p~,...,p2~m), and define 

K C C 2m to be the disked convex hull of (Ak, k = 0 , . . . , m  - 1}. It follows 

from (7) that 

(8) l o g N ( W . ~ , r , O . ) < l o g N ( K ,  HHc¢,~22) 

where l[ I[o~ is defined on C 2m by I[(zl,..., z2m)[l~ = m a x l < _ q < 2 m  Izql. 
Notice that K is the disked convex hull of m points of C 2"~ with II Iloo-norm 

one. By a result of B. Carl ([C]) we have then 

(9) log N ( K ,  II I1~, n) < ~ log 2 (/3m~? 2 + 2) ,  0 < rl < 1 

where a and/3 are universal constants. 

It follows from (8) and (9) that 

2c~ ( ~  ) 6 4 a .  2 (3 /3  8"02 + 2 ) .  
l o g N ( W m , r ,  Op)< ~p2 log 2 /92+2 < ~--~log ~-~. log21 

Using (6), it is now easy to get the desired upper estimate. 

(2) The lower estimate. Set m = 1 + [1/log 2 ~], so that r m < ½ _< r m-l ,  Define 

S = a = ( a t , . . . , a m ) e  {0,~=20}m; I{i;ai ¢0}1 = / ~ J  

and denote aq = e 21~q/m, 1 < q < m. For every a = ( a l , . . . ,  am) E C ~,  let L(a) 

be the polynomial of degree m - 1 such that L(a)(raq)  = aq, for 1 _< q _< m. Set 

A = {L(a); a • S}, and observe that 

(10) I I f - g [ l~ ->20  for e v e r y f # g i n A .  

X--',m--I I. - k  Fix a = ( a l , . . . , a m )  • S and let L(a) (z )  = 2-~k=o ukz . It is well known that 

1 1 1 

1 2 1 
aq = L a re i~ Ud = 2 

\ k = 0  

Since a E S, we have 

- ~ l a q l  2 = 402[ r2(m-1) ] < r2(m-l) 
4 0 2  - -  

q--1 
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We conclude that  

HL(a)HA+ = ~ Ibk[ <_ - ~  lad 2 r -2k <_ 1 
k----O q = l  \ k----0 

which means that A C W. From (10), we get N(W, r, O) _> [A I = IS[. If 

[r2(m-1)] 

P = L ~ J '  

then 

Isl = 2p > , 7 -  ; 

since 0 < 0 < 1 /4v~,  we get 

logN(W,r,O' >- ( l~ -~  - l )  lOg \log= ~ ] > 3~-~lOg \ log21 ] | 

c X l~o--~: We observe first that  if e , t , r ,n  Proof of the estimate k,~ >_ log(gogn) 

satisfy the conditions of Lemma 12, then k,~ _> (t - 1)r n. Indeed, let Zl, ..., z,~ 

be obtained by this lemma, and let h be any function in A+ such that  h(0) = 1 

and h(zt) . . . . .  h(zn) = 0. Then [Ih[IA+ > t, and taking into account the 

normalization I-Ii~l I zil = r'~, we get ~o~ (zl, ..., z~) >_ ( t -  1)r =, and the inequality 

k,~ _> (t - 1)r n follows from Theorem 1. To conclude the proof, we verify that  

(4) is satisfied for e = ¼, r = 2-¼, t = 7 v ~ (  ox/17~log(log n)) -1, where 7 is some 

universal constant. Indeed, since V(t) C tW, we have 

( ( N(V(t) ,  r, ~) < # tW, r, ~ = N W, r, ~ , 

and then the result follows from Lemma 13 and Proposition 14. | 

[c] 
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